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ABSTRACT

Popular models for describing the luminosity–density profiles of dynam-
ically hot stellar systems (e.g., Jaffe, Hernquist, Dehnen) were constructed
with the desire to match the deprojected form of an R1/4 light–profile. Real
galaxies, however, are now known to have a range of different light–profile
shapes that scale with mass. Consequently, although highly useful, the above
models have implicit limitations, and this is illustrated here through their ap-
plication to a number of real galaxy density profiles. On the other hand, the
analytical density profile given by Prugniel & Simien (1997) closely matches
the deprojected form of Sérsic R1/n light–profiles — including deprojected
exponential light–profiles. It is thus applicable for describing bulges in spi-
ral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical
galaxies. Here we provide simple equations, in terms of elementary and spe-
cial functions, for the gravitational potential and force associated with this
density profile. Furthermore, to match galaxies with partially depleted cores,
and better explore the supermassive black hole / galaxy connection, we have
added a power–law core to this density profile and derived similar expressions
for the potential and force of this hybrid profile. Expressions for the mass and
velocity dispersion, assuming isotropy, are also given. These spherical mod-
els may also prove appropriate for describing the dark matter distribution in
halos formed from ΛCDM cosmological simulations.

Key words: galaxies: elliptical and lenticular, cD – galaxies: kinematics and
dynamics – galaxies: nuclei – galaxies: structure – stellar dynamics

1 INTRODUCTION

Both elliptical galaxies and the bulges of disk galaxies, hereafter collectively referred to
as “bulges”, possess a range of light–profile “shapes” that are well described by Sérsic’s
(1963, 1968) R1/n model (e.g., Caon, Capaccioli & D’Onofrio 1993; Young & Currie 1994;
Graham et al. 1996; Graham 2001; Balcells et al. 2003). This model is a generalisation of de
Vaucouleurs’ (1948, 1959) R1/4 model which is known to be only appropriate for a subset of
elliptical galaxies having MB ∼ −21 mag (e.g., Kormendy & Djorgovski 1989; Graham &
Guzmán 2003). The R1/4 model’s limitation lies in the fact that it has only two parameters:
a radial scale and a surface brightness scale. The actual curvature, or “shape”, of every R1/4

model is the same.
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This restriction has carried over into computer simulations of “bulges”. This is because
the popular models that are used for describing the luminosity–density profiles of bulges,
such as those from Jaffe (1983), Hernquist (1990), and Dehnen (1993, see also Tremaine
et al. 1994), were created in order to reproduce an R1/4 light–profile when projected. All
three of these density models have exactly the same outer profile slope, declining with radius
as r−4. Consequently, these models are limited in their ability to a) simulate the range of
observed galaxy structures and b) quantify the evolution of these structures.

Over the past two decades it has also become apparent that the most luminous (MB <
−20.5 mag) elliptical galaxies have partially–depleted stellar–cores (Kormendy 1985; Lauer
1985; Ferrarese et al. 1994; Lauer et al. 1995; Gebhardt et al. 1996). On the other hand,
the less luminous elliptical galaxies, sometimes referred to as “power–law” galaxies, have
continuously curving Sérsic profiles that continue all the way in to the resolution limit of
HST images (Trujillo et al. 2004). A promising explanation, albeit not the only one proffered,
for the depleted cores is that the giant galaxies formed from the dissipationless merger of
two or more fainter elliptical galaxies. The subsequent gravitational ejection of stars by
the inwardly spiralling supermassive black holes (SMBHs) — from the progenitor galaxies
– scours out the core of the new galaxy (e.g., Begelman, Blandford & Rees 1980; Makino
& Ebisuzaki 1996; Faber et al. 1997; Milosavljević & Merritt 2001, 2005; Graham 2004).
Furthermore, fundamental connections have been found between the SMBH mass and a
bulge’s: (i) magnitude (Magorrian et al. 1998; McLure & Dunlop 2002; Erwin, Graham
& Caon 2002), (ii) light–profile shape (Graham et al. 2001, 2003a) and (iii) kinematics
(Ferrarese & Merritt 2000, Gebhardt et al. 2000).

Given the above connections, it is obviously important to have models that are able to
unite properly the domain of the black hole with the rest of the galaxy. In this paper we
present a modification of Prugniel & Simien’s (1997) density model that already matches the
observed range of ‘outer’ profile shapes; our modification allows one to additionally model
partially depleted cores. Moreover, and importantly, we also derive exact expressions for the
potential and force in terms of (fast–to–compute) elementary functions, making it possible
for simulations to explore the influence of cores and differing profile shapes. By setting the
size of the partially depleted core to zero, the equations for the potential and force are
applicable to the original Prugniel–Simien density profile, for which no previous expressions
existed.

In subsection 2.1 we introduce the density model, complete with power–law core, while
subsection 2.2 provides the equations for the potential and force. Expressions for the pro-
jection of the density model can be found in subsection 2.3. In section 3 we fit a number
of popular density models to the luminosity–density profiles of real galaxies and compare
the results with the fit from the Prugniel–Simien density model and our modification of this
model. A discussion of relevant issues is given in section 4, and section 5 provides a summary
of the main results. Appendix A provides the derivation for various expressions pertaining
to the velocity structure of the density profiles, including the circular velocity, spatial and
line–of–sight velocity dispersion. Appendix B provides the derivation of the equations given
in section 2.

2 THE MODEL

In this section we introduce a family of expressions associated with the spatial density
profiles of spherical stellar systems having Sérsic-like profiles with optional power–law cores.
We derive exact expressions for the potential and force and outline how the corresponding
surface brightness can be computed numerically (see Fig.1). With computer processing speed
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Figure 1. Flow chart for the density model: the projection of the analytically prescribed density is computed numerically,
while the potential and force are obtained exactly. BT 2–22 refers to Binney & Tremaine (1987, their equation 2–22).

in mind, in addition to the pressing need for more flexible galaxy models, the equations
consist only of analytical terms and simple elementary functions.

For the sake of parameter identification, we first introduce Sérsic’s (1963, 1968) model
for describing the projected, radial intensity profiles of galaxies, such that

I(R) = I0e
−b(R/Re)1/n

, (1)

where I0 is the central intensity and Re is the (projected) effective half–light radius. The
parameter n describes the curvature of the profile (see, e.g., Ciotti 1991). The term b is not a
parameter, but instead a function of n and chosen to ensure Re contains half the (projected)
galaxy light. It is obtained by solving the equation Γ(2n) = 2 γ(2n, b), where

Γ(a) =
∫ ∞

0
e−tta−1dt and γ(a, x) =

∫ x

0
e−tta−1dt, a > 0 (2)

are the complete and incomplete gamma functions, respectively. Although we have chosen to
numerically compute the exact value for b because fast codes are available for the computa-
tion of gamma functions, a good approximation of b for 0.5 < n < 10 is 2n−1/3+0.009876/n
(Prugniel & Simien 1997, see MacArthur, Courteau, & Holtzman 2003 for smaller values of
n). Using the substitution x = b(R/Re)

1/n, the total luminosity from equation (1) is given
as

Ltot =
∫ ∞

0
I(R′)2πR′dR′ = 2πI0R

2
enb−2nΓ(2n). (3)

For a sample of 250 dwarf elliptical and ordinary elliptical galaxies spanning −13 >
MB > −23 mag, Graham & Guzmán (2003) have shown how profile shape and surface
brightness vary with galaxy magnitude. They found MB = −9.4 log(n) − 14.3, and MB =
(2/3)µ0 − 29.5 mag — until the presence of cores in galaxies brighter than ∼-20.5 B–mag.
The latter phenomenon makes it more appropriate to use µe, the surface brightness at Re,
rather than the central surface brightness µ0 = −2.5 log(I0). Doing so gives the expression
MB = (2/3)(µe − 1.086b) − 29.5 mag. Typical values are given Table 1.

A compendium of expressions related to Sérsic’s R1/n model can be found in Graham &
Driver (2005).



4 Terzić & Graham

Table 1. Typical galaxy masses and central surface brightnesses µ0 = −2.5 log(I0) (using the inward extrapolation of the outer
Sérsic profile in the case of “core” galaxies) associated with a range of Sérsic indices n. The mass estimates have come from the
absolute B–band magnitudes in Graham & Guzmán (2003) using MB,⊙=5.47 (Cox 2000) and M/LB=5.31 (Worthey 1994,
assuming a 12 Gyr population with Fe/H=0). The numbers are only indicative, with intrinsic variance playing a role amongst
real galaxies.

Mass n µ0,B

M⊙ mag arcsec−2

∼ 107 0.5 ∼27
∼ 108 1 ∼25
∼ 109 2 ∼20
∼ 1011 4 ∼14
∼ 1012 10 ∼9

2.1 Density

Generalising an expression from Mellier & Mathez (1987) that approximated the spatial,
i.e. not projected, density profile of the R1/4 model, Prugniel & Simien (1997) provide
an analytical approximation to the density profile of the R1/n model. Lima Neto, Gerbal
& Márquez (1999) showed that this spherical model is accurate to better than 5% over
the radial range 10−2–103Re. An even more accurate approximation for both spherical and
triaxial stellar systems with R1/n light–profiles was developed by Trujillo et al. (2002), with
an accuracy better than 0.1%. However, although analytical, the latter expression is not
particularly simple. Impressively, an exact solution to the deprojection of the R1/n model,
which obviously includes the R1/4 case, was given in terms of Meijer G functions by Mazure &
Capelato (2002); but again these equations are somewhat complicated1. Moreover, although
these models can properly treat the range of outer profile shapes observed in real galaxies,
they can not additionally allow for the presence of partially depleted cores. In fact, we are
unaware of any density model capable of simultaneously describing the range of structure
observed in both the inner and outer regime of galaxies with “cores”.

The 3–parameter (ρ0, Re, n) density profile of Prugniel & Simien (1997; their equation B6)
is relatively simple and can be written as

ρ(r) = ρ0

(

r
Re

)−p
e−b(r/Re)

1/n

ρ0 = M
L

I0 bn(1−p) Γ(2n)
2ReΓ(n(3−p))

,
(4)

where r is the spatial radius and ρ0 is the normalisation such that the total mass from
equation (4, see Appendix A) equals that from equation (1). We adopt Lima Neto et al.’s
(1999) estimate, or rather the updated value given in Márquez et al. (2000), for the term
p, for which a high–quality match between the exact, deprojected Sérsic profiles (solved
numerically) and the above expression is obtained when p = 1.0 − 0.6097/n + 0.05563/n2,
for 0.6 < n < 10 and 10−2 ≤ R/Re ≤ 103. The quantity M/L ≡ Υ is the mass–to–luminosity
ratio, which is typically taken not to depend on galaxy radius but may of course do so. The
density at r = Re is simply ρ0e

−b. Figure (2) shows the behaviour of this density profile for
different values of profile shape n. Expressions and figures for the (enclosed) mass profile, the
circular velocity, and the spatial and line–of–sight velocity dispersion are given in Appendix
A for the spherical case.

Adding an inner power–law with slope γ, which is not to be confused with the incomplete
gamma function γ(a, x), we obtain the new model

1 Exact analytical expressions for the mass, gravitational potential, total energy and the central velocity dispersion are also
presented in Mazure & Capelato (2002). Exact numerical expressions are given in Ciotti (1991).
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Figure 2. Core–less galaxies. Panel a) projected intensity I (exact numerical solution); panel c) potential (equation 8 divided
by Φ(0.01Re)); panel d) force (equation 14); and panel e) pseudo potential (equation 15 divided by |Φ(0.01Re)| with h2 =
10−6|Φ(0.01Re)|) associated with the Prugniel–Simien density profiles (equation 4) shown in panel b) for varying values of the
profile shape n: n = 0.5 (solid lines), n = 1 (dotted), n = 2 (dashed), n = 4 (dash–dot), n = 10 (double–dash). The radius and
density are normalised such that Re = 1 and ρ(0.01Re) = 1.

ρ(r) = ρ′
[

1 +
(

rb

r

)α]γ/α
{

[(rα + rb
α)/Re

α]−p/α e−b[(rα+rα
b )/Rα

e ]
1/nα

}

ρ′ = ρb 2(p−γ)/α
(

rb

Re

)p
eb(21/αrb/Re)

1/n

.
(5)

The break radius, rb, denotes the transition where the profile changes from one regime to
the other, with ρb the density at this radius. The parameter α controls the sharpness of
the transition. For r << rb equation (5) tends to a power–law with slope γ. For r >> rb

equation (5) reduces to equation (4).
Modelling the light–profiles of luminous elliptical galaxies, Trujillo et al. (2004) have

shown that the transition from the inner “core” to the outer Sérsic profile is probably rather
sharp. Motivated by this result, we have chosen to make the transition between the inner
power–law and the outer profile sharp by considering the α → ∞ limit. This reduces the
above expression to a 5–parameter model capable of describing the entire radial extent of
spherical stellar systems with power–law “cores”, and can be written as

ρ(r) = ρb

[

(

rb

r

)γ
h(rb − r) + ρ̄

(

r
Re

)−p
e−b(r/Re)

1/n

h(r − rb)
]

ρ̄ =
(

rb

Re

)p
eb(rb/Re)

1/n

,
(6)

where h(x) is the Heaviside step function such that h=1 if x > 0 and h=0 if x ≤ 0.
These spherical models are illustrated in Fig.3 e–h). In each panel a range of values of

n has been used, while the value of γ increases sequentially from 0 to 1, 1.5 and finally 2.
Depending on the parameter combination, one may have either a partially depleted core
or a central excess — possibly representative of a nuclear star cluster or adiabatic growth
around a supermassive black hole (e.g., Merritt 2004, and references therein). The break
radius has been set to 0.01Re, which a) matches the observed core–radii values of 0.01 to
0.02Re found by Trujillo et al. (2004, their table 2), and b) only uses the density profile
from Prugniel & Simien (1997) over the radial range where it provides a high–quality match
to a deprojected Sérsic profile. For reference, the nuclear star cluster “half–width at half–
maximum” (HWHM) values divided by their host bulge Re values in nucleated dwarf
elliptical galaxies is 0.02 to 0.04 (Graham & Guzmán 2003, their table 2).

2.2 Gravitational Potential and Force

We derive an expression for the potential (assuming spherical symmetry) using the inverted
form of the Poisson equation (e.g., Binney & Tremaine 1987, their equation 2-22):
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Figure 3. Core galaxies. Panels a–d) show the projected intensity I (equation 18, exact numerical solution); panels i–l) show the
potential (equation 8 divided by Φ(r = rb)); panels m–l) show the force (equation 14); and panels q–t) show the pseudo potential
(equation 15 divided by |Φ(r = rb)| with h2 = 10−6|Φ(r = rb)|) associated with the density profiles (equation 6) in panels e–h),
for varying values of the outer profile shape n: n = 0.5 (solid lines), n = 1 (dotted), n = 2 (dashed), n = 4 (dash-dot), n = 10
(double–dash); and varying central cusp slope γ. In these figures the scale radius Re has a value of 1, as does the scale density ρb

which occurs at a radius rb = 0.01Re.

Φ(r) = −4πG





1

r

r
∫

0

ρ(r̄)r̄2dr̄ +

∞
∫

r

ρ(r̄)r̄dr̄



 . (7)

After some algebraic manipulation (see Appendix B), one obtains

Φ(r) = −4πG

{

1
r
J1(r) + J2(r) + L1(rb) if r ≤ rb,

1
r
J1(rb) + 1

r
L2(r) + L1(r) if r > rb,

, (8)

where

J1(r) = ρbrb
γr3−γ/(3 − γ) if γ < 3 (9)

J2(r) = ρbrb
γ

{

1
2−γ

(rb
2−γ − r2−γ) if γ 6= 2

ln rb

r
if γ = 2

, (10)

L1(r) = ρbρ̄Re
2nbn(p−2)Γ

(

n(2 − p), b
(

r

Re

)1/n
)

, (11)

L2(r) = ρbρ̄Re
3nbn(p−3)

[

Γ

(

n(3 − p), b
(

rb

Re

)1/n
)

− Γ

(

n(3 − p), b
(

r

Re

)1/n
)]

, (12)

and

Γ(a, x) =
∫ ∞

x
e−tta−1dt, a > 0 (13)
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is the complement to the incomplete gamma function shown in equation (2). Although J1

diverges when γ = 3, this is unlikely to be a problem because such steep inner profile
slopes are not observed in real galaxies (e.g. Gebhardt et al. 1996; Milosavljević et al. 2002;
Ravindranath, Ho, & Filippenko 2002). Fig.3i–3l show the gravitational potential of this
model as a function of spatial radius r. The case when the break radius equals zero is shown
in Fig. (2c).

The central potential Φ(0) = −4πG[J2(0) + L1(rb)], for γ 6= 2. When rb = 0, Φ(0) =
−4πGL1(0), with ρbρ̄ = ρ0.

The corresponding radial force is computed by differentiation with respect to the spatial
radial coordinate r. After some algebraic cancellations (see Appendix B), the force is found
to be

F (r) = −dΦ

dr
= 4πG

{

− 1
r2 J1(r) if r ≤ rb,

− 1
r2 J1(rb) − 1

r2 L2(r) if r > rb,
. (14)

We remind readers of the logarithmic radial scale used in Fig. 3, and caution that the
gradient to the curves shown in Fig.3i–3l should be interpreted with care when comparing
them with the force shown in Fig.3m–3p. The case when the break radius equals zero is
shown in Fig. (2d).

In order to carry out orbital integration, one needs to compute the force along an orbit.
For a fixed break radius rb, the term in the first half of the expression L2(r) is constant and
therefore only needs to be computed once at the beginning of a simulation. Therefore, the
incomplete gamma function Γ(a, x) need only be called once per evaluation of the force (the
term in the second half of L2(r)), and not at all if the star is inside the break radius, i.e.
r < rb.

The abrupt change in the force — whose nature is not only dependent on the value of the
inner profile slope γ and the Sérsic index n but also on the ratio rb/Re — is not a problem
for constructing models because the force remains both negative and continuous at rb. Orbit
stability can be checked using the “pseudo” potential Ψ(r), sometimes also referred to as
the “effective” potential (Landau & Lifshitz 1976; Goldstein 1980), and given by

Ψ(r) = Φ(r) +
h2

2r2
, (15)

where h is the angular momentum per unit mass. Uisng h2 = 10−6|Φ(0.01Re)|, and normal-
ising Ψ(r) by dividing by |Φ(0.01Re)|, in order to highlight orbits near the radius 0.01Re,
Fig.3q–3t reveals that the abrupt change in density and force at rb does not result in a
double minimum for the pseudo potential — which would be indicative of an unstable con-
figuration. Instead, for a given orbital energy less than zero, particles remain bound within
the curve defined by the pseudo potential.

In summary, we have a set of equations consisting of analytical expressions, and one
special function for which fast computer codes exist, that can a) simulate the range of
observed light–profile shapes and b) model partially depleted cores and/or certain additional
nuclear components.

2.3 Projected Surface Brightness Profile

The projection of the above density profile, i.e. the intensity–profile or “light–profile”, is
computed by solving the Abel integral

I(R) =
2

Υ

∞
∫

R

ρ(r)r√
r2 − R2

dr, (16)
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where R is the projected radius and Υ is the mass–to–luminosity ratio. If equation (6) is
rewritten as ρ(r) = ρ1(r) + ρ2(r), where

ρ1(r) = ρb

(

rb

r

)γ

h(rb − r), and

ρ2(r) = ρbρ̄
(

r

Re

)−p

e−b(r/Re)
1/n

h(r − rb), (17)

then the corresponding intensity can be expressed as

I(R) =















2
Υ

rb
∫

R

ρ1(r)r√
r2−R2

dr + 2
Υ

∞
∫

rb

ρ2(r)r√
r2−R2

dr ≡ I1(R) + I2(R; rb) if R ≤ rb,

2
Υ

∞
∫

R

ρ2(r)r√
r2−R2

dr ≡ I2(R) if R > rb.
(18)

As shown in Appendix B, the first term I1(R) is such that

I1(R) =
2

Υ
ρbrb

γ































√

r2
b − R2 if γ = 0,

ln
rb+

√
r2
b
−R2

R
if γ = 1,

R−1 sin−1
√

1 − R2/r2
b if γ = 2,

1
2
R1−γB1−R2/rb

2

(

1
2
, γ−1

2

)

otherwise,

(19)

with B the incomplete Beta function defined as

Bx(y, z) =

x
∫

0

uy−1(1 − u)z−1du. (20)

The only expressions we do not provide an exact equation for are I2(R) and I2(R; rb).
However, because Prugniel & Simien (1997) devised equation (4) to match the deprojected
form of the Sérsic light–profile, it makes sense to use the R1/n model as a suitable approxi-
mation. One therefore has that

I2(R) ≈ Iee
be−b(R/Re)

1/n

(21)

with Ie the (projected) intensity at the (projected) radius Re. The value of Ie can be set in
terms of the density model parameters if one applies the condition that the total mass given
by equation (21, see equation 3) equals the total mass from equation (4, see Appendix A),
yielding

Ie =
2e−bReρbρ̄Γ(n(3 − p))

ΥΓ(2n)bn(1−p)
, (22)

with ρ̄ given in equation (6). Over the radial interval 10−2 ≤ R/Re ≤ 102, the maximum
difference in surface brightness between this approximation for I2(R) and the exact value
is about 0.1 mag arcsec−2 if n > 2, and only 0.04 mag arcsec−2 when n = 4 (Fig. 4). For
a Gaussian profile (n = 0.5) the agreement is very good, while for an exponential profile
(n = 1) the match at large radii is rather poor — increasing to ∼0.2 mag arcsec−2 at
R/Re = 100.

The only term requiring numerical evaluation is I2(R; rb), although, if desired, one may
choose to additionally evaluate I2(R) numerically rather than using the analytical approx-
imation given in equation (21). Given that the intensity profile is likely only computed at
the end, or at a few intermediate stages, of a simulation, the computation time involved in
deriving the light–profile is not a concern.

The exact (numerically computed) projected light–profiles associated with the density
models in Fig. (2b) are shown in Fig. (2a), and those in Fig.3e–3h are shown in Fig.3a–3d.
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Figure 4. The relative error between the term I2(R) given in equation (18) and the approximation given in equation (21) is
shown as a function of radius, normalised by the effective radius Re, for varying light–profile shapes n.

In passing we note that when γ = 0 and R < rb, the slope of the surface brightness profile
is close to but not exactly zero (Fig.3a). We also note that the value of Ie and Re are stable
against increases in rb and changes in γ because they pertain to the outer, undisturbed profile
when there is a partially depleted core, and to the underlying host galaxy profile when a
central flux excess is present. As such, when rb > 0, Ie and Re are not the total galaxy half–
light values. In practice, the stellar flux deficit is only ∼0.1% for “core” galaxies (Graham
2004) and the stellar flux excess ∼1% in nucleated dwarf elliptical galaxies (Graham &
Guzmán 2003), and so the actual discrepancy is not greater than ∼1%.

3 APPLICATION TO REAL GALAXY PROFILES

Over a quarter of a century ago, de Vaucouleurs & Capaccioli (1979) demonstrated that,
when the inner 10 arcseconds were excluded, the R1/4 model provided a very good fit to the
light–profile of NGC 3379 (MB ∼ −20 mag). Since then, Capaccioli and his collaborators
have shown that different galaxies can be equally well fit, but only by using models with a
very different curvature (e.g., Caon et al. 1993). Bertin, Ciotti & Del Principe (2002) have
shown R1/n fits to the circularised light–profiles of four (illustrative) galaxies from Caon
et al. (1993). Here we deproject these galaxies’ major–axis light–profiles and fit the Jaffe,
Hernquist and Dehnen models, and explore how well they describe the luminosity–density
profile in comparison with the model of Prugniel & Simien (1997) given in equation (4).
In addition, we include the HST–resolved dwarf elliptical galaxy2 LGC 47 (Stiavelli et al.
2001), and the “core” galaxy NGC 3348 (Rest et al. 2001; Trujillo et al. 2004) to which we
apply our new core-density model (equation 6).

3.1 Sérsic and core–Sérsic model

Fig.5 shows the Sérsic (1963, 1968) model applied to the ground–based, major–axis, B–
band light–profiles of NGC 1379, 4458, 4374, and 4552, and applied to the HST–based,
major–axis, I–band light–profile of LGC 47. The data have come from Caon et al. (1993)
and Stiavelli et al. (2001), respectively. Also shown is the core–Sérsic model (Graham et al.
2003b; Trujillo et al. 2004) applied to the HST–based, major–axis, R–band light–profile of

2 LGC: Leo Group Catalog.
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Figure 5. Best–fitting Sérsic model to the major–axis, B–band light–profiles of NGC 1379, 4458, 4374 and 4552 (data
from Caon et al. 1990; Caon et al. 1993), and the major–axis, I–band light–profile of LGC 47 (data from Stiavelli et al.
2001). The best–fitting core–Sérsic model to the major–axis, R–band light–profile of the “core” galaxy NGC 3348 is also
shown (data from Trujillo et al. 2004); the inward extrapolation of the outer Sérsic profile is shown by the dashed curve.
The model parameters are given in Table 2. The effective half–light radii are marked with an arrow.

Table 2. Sérsic and core–Sérsic parameters from the fits in Fig.5.

Gal Dist. Band µe Re n γ Rb µb

Id. mod. mag arcsec−2 ′′ ′′ mag arcsec−2

NGC 1379 31.51 B 22.02 24.3 2.0 ... ... ...
NGC 4458 31.18 B 22.46 18.9 2.6 ... ... ...
LGC 47 30.30 I 22.84 22.7 1.1 ... ... ...
NGC 4374 31.32 B 24.11 146 8.2 ... ... ...
NGC 4552 30.93 B 25.16 172 11.8 ... ... ...
NGC 3348 33.08 R ... 21.4 3.8 0.18 0.43 15.30
NGC 2986 32.31 R ... 75.7 6.7 0.25 0.77 15.60
NGC 4291 32.09 R ... 17.8 5.3 0.14 0.38 14.54

NGC 3348. Table 2 shows the best–fitting parameters. For the first four galaxies, the values
agree with those reported in Caon et al. (1993), with the exception that we find a slightly
smaller value of n for NGC 4552. However, the difference between an n = 12 and n = 14
profile is minimal. For LGC 47, Stiavelli et al. (2001) presented fits to the geometric mean

(r =
√

ab), V –band light–profile, finding n ∼ 1.5. Due to possible colour gradients, and
ellipticity gradients, it is expected that our fit to the major–axis, I–band light–profile may
be slightly different: nonetheless, we derived a similarly small value of n = 1.1. NGC 1379
and NGC 4458 have values of n = 2.0 and 2.6 respectively. NGC 4374 and NGC 4552
have values of ∼ 8 and ∼ 12, considerably greater than 4. On the other hand, NGC 3348
has a value of n close to 4, but possesses a distinct core. Although it is likely the large
galaxies NGC 4374 and NGC 4552 may also possess a partially depleted core, the inner few
arcseconds have been excluded from their profile due the effects of seeing.

3.2 Density profiles

In order to obtain each galaxy’s deprojected light–profile, a non–parametric deprojection
was used when solving the appropriate Abel integral. The best–fitting light–profile models
were however used to extrapolate the observed light–profiles to infinity. This simply meant
using the best-fitting Sérsic model to extend the observed data to larger radii in order for
one to compute the deprojected light–profile, i.e. the density profile. The actual choice of
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extrapolation only affects the outer luminosity–density profile slightly. Due to the coarser
radial sampling of the ground–based profiles than the HST profiles, their deprojected profiles
are somewhat noisier. We applied box–cart smoothing with four different box sizes and
refitted the various density models; in every instance the best–fitting model parameters
where practically identical, suggesting such noise is not an issue.

In the case of the dwarf elliptical galaxy LGC 47, its observed (exponential) light–profile
only went out to 1 Re, not enough to properly show how such stellar distributions decline at
large radii. For this galaxy only, we model the density profile to radii larger than observed.
Given that galaxies, and bulges, with exponential profiles do exist, we felt that the analysis
of such a profile would be of value.

The luminosity–density profiles (Fig.6–10) have been calibrated in units of L⊙ pc−3

using the distance moduli provided in Tonry et al. (2001) for the Caon et al. sample, and
a distance of 41 Mpc for NGC 3348 and 11.5 Mpc for LGC 47, taken from their respective
papers. We used solar absolute magnitudes of MB=5.47, MR=4.28 and MI=3.94 (Cox 2000).
A Hubble constant H0 = 75 km s−1 Mpc−1 was used.

The value of ∆ associated with the residual profiles shown in Fig.6–10 is not quite the
rms error, but is computed using the expression

∆ =

√

∑m
i=1 δi

2

m − k
, (23)

where m is the number of data points, δi is the i th residual and k is the number of parameters
in the fitted model. Because the different models have different numbers of free parameters,
this provides a more appropriate measure for model comparison.

3.3 Jaffe model

Fig.6 presents the best–fitting (2–parameter) Jaffe (1980) model, ρ(r) = [4ρ(a)](r/a)−2(1 +
r/a)−2, to each galaxy’s luminosity–density profile. The scale–length is denoted by a, and
ρ(a) is simply the density at r = a. The position of the transition radius, i.e. the scale–length,
where this model changes from an inner power–law slope of −2 to an outer power–law slope
of −4 is marked with an arrow in Fig.6. In the case of LGC 47 and NGC 3348, the Jaffe
model is clearly inadequate to describe the stellar profile. We also note that the best–
fitting models have transition radii well beyond the observed radial extent of the galaxies.
The hump–shaped residual profiles (upper panels) for the low n galaxies NGC 1379 and
NGC 4458, and the bowl–shaped residual profiles for the high n galaxies NGC 4374 and
NGC 4552 are clear indications that the Jaffe model is unable to match the global curvature
in these galaxies’ stellar distributions.

3.4 Hernquist model

In Fig.7 one can see the best–fitting (2–parameter) Hernquist (1990) models, ρ(r) = [8ρ(a)](r/a)−1(1+
r/a)−3. This model is also incapable of describing the core galaxy NGC 3348, and the
hump/bowl shaped residual profiles of the other galaxies largely reflects the failure seen
with the Jaffe model. We do however note that in the case of NGC 4458, the (non-core)
galaxy with the closest Sérsic index to a value of 4, the fit is quite acceptable.

3.5 Dehnen model

The (3–parameter) Dehnen (1993) model, ρ(r) = [24−γρ(a)](r/a)−γ(1 + r/a)γ−4, which sub-
sumes the first two models as special cases, does noticeably better. This is due to the fact
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Figure 6. Best–fitting Jaffe model to the deprojected light–profiles of the galaxies in Fig.5. The luminosity–density profile
ν(r) = ρ(r)/(M/L) is in units of L⊙,B pc−3 for NGC 1379, 4458, 4374 and 4552, L⊙,R pc−3 for NGC 3348, and L⊙,I

pc−3 for LGC 47. The model parameters are given in Table 3. The arrow denotes the size of the scale radius a.

Figure 7. Same as Fig.6, except that the best–fitting Hernquist models are shown.

that it has an additional (third) parameter over the previous two models that actually
measures the inner power–law slope, rather than assuming some fixed value. Obviously the
Dehnen model fails to fit the detailed profile of NGC 3348. In a sense, it also fails to match
NGC 4552, setting the transition radius to 500′′ — an arbitrary large upper limit in our
code — well outside of the observed radial range. The reason for this large transition radius
is however understood. Graham & Driver (2005) show that for large values of n, the Sérsic
model tends to a power–law such that I(R) ∼ R−2; which results in ρ(r) ∼ r−3. NGC 4552
has the largest value of n in our sample, and the optimal Dehnen model is simply a (single)
power–law with slope γ.

In the case of the lower n galaxies (LGC 47 and NGC 1379), one can see that the
Dehnen model — constructed to match R1/4 light–profiles — does not decline as quickly as
the observed structures. Due to the fact that we used an exponential–like model (n=1.1)
to extrapolate the light–profile of LGC 47, this eliminates the possibility that the observed
mismatch at large radii may be unique to this galaxy. Rather, the mismatch reflects the
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Figure 8. Same as Fig.6, except that the best–fitting Dehnen models are shown.

Table 3. Best–fitting parameters from a range of density models. The units are L⊙ pc−3 for ρ and arcseconds for a.

Gal. Band Jaffe Hernquist ——– Dehnen —–— ———————– Equation (6) ——————–—
Id. a log ρ(a) a log ρ(a) a log ρ(a) γ Re log ρ(Re) n γ rb log ρ(rb)

NGC 1379 B 46.2 -2.17 18.5 -1.03 11.1 -0.49 0.00 24.7 -1.31 2.1 ... ... ...
NGC 4458 B 40.8 -2.27 14.5 -0.99 13.5 -0.91 0.89 18.8 -1.28 2.5 ... ... ...
LGC 47 I 500 -6.07 168 -3.71 21.3 -1.91 0.12 22.4 -1.85 0.9 ... ... ...
NGC 4374 B 123 -2.61 39.2 -1.16 285 -3.74 2.36 131 -2.73 7.7 ... ... ...
NGC 4552 B 93.9 -2.45 29.3 -0.97 500 -4.68 2.54 168 -3.21 10.8 ... ... ...
NGC 3348 R 500 -4.97 10.6 0.46 06.4 0.14 0.71 20.2 ... 3.6 0.44 0.37 2.15
NGC 2986 R ... ... ... ... ... ... ... 79.1 ... 6.5 0.71 0.78 1.92
NGC 4291 R ... ... ... ... ... ... ... 21.4 ... 5.6 0.43 0.46 2.56

well known fact that exponential light–profiles have outer density profiles that decline more
quickly with radius than r−4. Not surprisingly, an almost identical result to that seen in
Fig. 8 for LGC 47 is obtained when we deproject a pure n = 1 exponential light–profile. As
a rule, the lower the value of the Sérsic index n, the steeper the outer decline in density and
the greater the mismatch with the Dehnen model.

3.6 Prugniel–Simien density profile, and our adaptation for galaxies with
power–law cores

Fig.9 presents the best–fitting (3–parameter) model of Prugniel & Simien (1997). Aside from
NGC 3348, the fits are obviously rather good, with only NGC 4552 suggesting the presence
of additional fine structure that has been missed. In fact, Caon et al. (1993) classified this
as a lenticular galaxy; the other galaxies are elliptical, i.e. they do not have an embedded
large–scale disk. With the exception of the core galaxy NGC 3348, every fit is equal to or
better than those obtained with the (3–parameter) Dehnen model. This is especially the
case for the low n galaxies LGC 47 and NGC 1379.

Fig.10 presents the new (5–parameter) model (equation 6) applied to the core galaxy
NGC 3348. The model performs well and is the only density model we are aware of that
can fit galaxies possessing partially depleted cores. The best–fitting parameters are given in
Table 3. Although the luminosity–density at a spatial radius r equal to Re is not a formal
parameter of the new model, it is equal to 10−1.26L⊙,R pc−3 for NGC 3348.

We have also included two additional “core” galaxies: NGC 2986 and NGC 4291. The
best–fitting core-Sérsic parameters derived here for NGC 4291 are the same as those given in
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Figure 9. Same as Fig.6, except that the best–fitting model of Prugniel & Simien (1997), as given by equation (4), is
shown here. The arrow marks the radius Re.

Figure 10. New density model (equation 6) applied to the core galaxies NGC 3348, 2986 and 4291. The arrow marks the
model radius Re.

Trujillo et al. (2004), as was the case with NGC 3348. However, our core–Sérsic parameters
for NGC 2986 are somewhat different; the reason is due to the fact that we exclude the
(highly deviant) outermost two data points from the light–profile given in Trujillo et al.,
which may be due to poor sky–subtraction. Although the core–parameters did not change
much, the value of n increased by 25% and Re increased from 44 to 76 arcseconds.

NGC 2986 and NGC 4291 were not shown in the previous figures because they had
residual profiles very similar to that seen for NGC 3348. They are included here so one can
see the new model’s applicability to other core galaxies. Interestingly, the residual profiles
seem to suggest that the core density profiles have only approximately a power–law structure.

4 DISCUSSION

Just like the R1/4 model, the R1/n model was offered as an empirical fitting function. A
physical basis for its origin is not widely recognised. Márquez et al. (2000, 2001, and ref-
erences therein) have argued it is a natural result from the (near) conservation of specific
entropy. Other theoretically motivated models, based on the statistical mechanics of par-
tially complete violent relaxation, also lead to density profiles that match deprojected Sérsic
R1/n profiles, at least for 2.5 < n < 8.5 (Trenti & Bertin 2005, see also Hjorth & Mad-
sen 1995). We do not, however, attempt to solve this question here, but do note that the
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Jaffe, Hernquist and Dehnen models, like the new model presented here, are simply useful
empirical fitting functions.

Fig.6 and 7 clearly reveal that the Jaffe and Hernquist models fail to describe the stellar
distribution of low– and high–n galaxies, relative to n = 4. This is not particularly surprising
as they were only designed to match galaxies with an n = 4 light–profile. The Dehnen model
does better, but fails to model the lower n galaxies in our sample. This can be seen in the
outer part of the profile for NGC 1379 and LGC 47 in Fig. 8, where the density declines more
rapidly with radius than r−4. At the high–n end, the (projected) intensity profile I(r) → r−2

as the Sérsic index n → ∞ (Graham & Driver 2005), and the density profile tends towards
a power-law with ρ(r) → r−3. For reference, the isothermal model has ρ(r) ∝ r−2. Ignoring
the presence of partially depleted cores, for galaxies with values of n greater than ∼8, a
single power–law can approximate their density profiles and the Dehnen model appears to
work well, albeit by setting the scale radius, a, to very large radii.

Zhao (1996) developed a 5–parameter generalisation of the Dehnen model such that
both the inner and outer power–law slope can be adjusted, along with the radius, density
and sharpness of the transition region. The model was first introduced by Hernquist (1990,
his equation 43) and has the same structural form as the “Nuker” model (e.g., Lauer et
al. 1995). However, as explained in Graham et al. (2002, 2003b), such double power–law
models are not appropriate for describing profiles with obvious logarithmic curvature, that
is, profiles without inner and outer power–laws but whose slopes continuously vary as a
function of radius — which is the case for the luminosity–density profiles of most elliptical
galaxies and bulges. Although in the absence of a partially depleted stellar core this model
should be able to approximate real luminosity–density profiles, the parameters themselves
are highly sensitive to the fitted radial range. This is because the parameters simply adjust
themselves in order to match the curvature in whatever part of the profile one includes
in the fit, providing inner and outer power–law slopes that are a product of the radial
range sampled. Consequently, this model is not explored here. The 3–parameter model of
Prugniel & Simien (1997) was, however, designed to describe profiles with curvature and
does therefore not suffer from such a problem.

The density profile of Prugniel & Simien (equation 4) may prove helpful for describing
gravitational lenses (e.g., Cardone 2004; Kawano et al. 2004) and the dark matter distribu-
tions of halos built in ΛCDM cosmological simulations. Demarco et al. (2003) have already
observed the hot gas in galaxy clusters to have a (projected) Sérsic distribution. Intriguingly,
the curved nature of simulated dark matter profiles has resulted in the recent discovery that
Sérsic’s model describes them better than the generalised NFW3 double power–law model
with inner and outer slopes of −1 and −3, respectively (Merritt et al. 2005). Whether or
not they were aware of the fact, Navarro et al. (2004; their equation 5) and Cardone, Piedi-
palumbo & Tortora (2005; their equation 10) presented Sérsic’s model as a leading candidate
to describe the density profiles of dark matter halos. It would be of interest to investigate
whether the generalisation of the Mellier–Mathez (1987) model presented by Prugniel &
Simien (1997) (equation 4 in this paper) may be useful, if not even more appropriate, for
such studies.

The new density–potential pair should also prove fruitful for simulations of bulges in
disk galaxies. To date, such studies have usually been performed using models which are
inappropriate for describing the majority of bulges. This situation has arisen from improved

3 If cosmological simulations of dark matter halos indeed have density profiles which are logarithmically curved, i.e. if they
have slopes which vary continuously with radius (e.g. Navarro et al. 2004; Hansen & Moore 2005), then the issue of whether
the central cusp slope is -1 or -1.5 or smaller may need to be reconsidered.
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observations which have shown bulges typically have Sérsic indices n ranging from 0.5 to 3,
rather than 4 (e.g., Andredakis & Sanders 1994; de Jong 1996; Graham 2001; MacArthur et
al. 2003).

It is hoped that the models presented here will additionally enable one to perform a num-
ber of simulations testing various observational results and theoretical problems associated
with the influence of SMBHs on central density cusps and the connection with the global
stellar structure. The influence of SMBHs on the stellar dynamics (e.g., Baes, Dejonghe &
Buyle 2005) can also be explored as a function of various physical parameters. One way this
can be achieved is by investigating the restrictions that self–consistency requirements pose
on galaxy density profiles (e.g., Terzić 2003). Other numerical simulations may investigate
the effects of binary SMBHs at the centers of galaxies (e.g., Graham 2004). Gravitational
scattering (e.g., Makino & Funato 2004), as well as resonant chaotic phase mixing between
the frequencies of the binary orbit and the natural frequencies of stellar orbits, can cause a
significant redistribution of mass extending well beyond the radius of the binary (Kandrup
et al. 2003; see also Merritt & Poon 2004). One could also address the similarities and dif-
ferences between the nature and efficiency of chaotic phase mixing in the new model (both
time–independent and subjected to time–periodic pulsations) and previous studies that have
used somewhat more limited potentials (e.g., Kandrup & Mahon 1994, Merritt & Valluri
1996; Siopis & Kandrup 2000, Terzić & Kandrup 2004). In addition, one should be able
to extend past work which has explored the evolution of galaxies using models that had a
restricted range of outer galaxy structure (e.g., Merritt & Fridman 1996; Poon & Merritt
2002, 2004). Furthermore, it is hoped one will explore new connections between the outer
galaxy structure, i.e. profile shape, and the properties of the core, such as the inner cusp
slope, core size, and black hole mass.

5 SUMMARY

Our application of the (2–parameter) Jaffe and Hernquist models to a sample of luminosity–
density profiles taken from real galaxies reveals that these models are inadequate for de-
scribing the observed range of stellar distributions. The (3–parameter) Dehnen model does
better, providing a good match to the density profiles of large early-type galaxies with Sérsic
indices around 4 and greater, but it fails to adequately match the deprojected light–profiles
of galaxies with low Sérsic indices, which would encompass dwarf elliptical galaxies and most
bulges in disk galaxies (e.g., Balcells et al. 2003, and references therein). If one wishes to
explore the hierarchical merging theory, in particular the potential build up of large elliptical
galaxies through the collision of lesser elliptical galaxies, then none of the above models are
good starting points.

These failures are not particularly surprising because all three of these models were
constructed to have outer density profiles that fall off as r−4 — in order to match the decline
in density of a deprojected R1/4 profile. As such, they are highly useful but nonetheless
limited models. The (3–parameter) density profile of Prugniel & Simien (1997), however,
does not have the above constraint, and consequently does much better, accurately matching
the density profiles of luminous elliptical galaxies with n > 4 and faint ellipticals with n < 4,
including exponential (n = 1) profiles. This model may even prove applicable to the density
profiles of ΛCDM–generated dark matter halos.

We have derived exact expressions for the gravitational potential and force associated
with the latter density profile. The use of this family of expressions for simulations of el-
liptical galaxies and bulges in general, and explorations of how their structure may evolve
under various circumstances, should enable projects of a nature previously prohibited by
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the former class of models. Moreover, the equations for the potential and force contain only
one elementary function and are otherwise analytical; they are therefore fast to compute.

We have also developed what we believe to be the only density profile capable of simulta-
neously matching both the nuclear and global stellar distribution in galaxies having partially
depleted cores. Application of this (5–parameter) profile to NGC 3348 reveals a good fit (rms
∼ 0.03 dex) over 3 orders of magnitude in radial range and 6 in luminosity density. Similar
results are obtained from the core galaxies NGC 4291 and NGC 2986. Furthermore, the
associated equations for the potential and force are also derived here using only the incom-
plete gamma function and analytical terms. Expressions to derive the enclosed mass, the
spatial and projected velocity dispersion, and the projected intensity profile are additionally
provided.
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7 APPENDIX A: MASS, CIRCULAR VELOCITY, AND VELOCITY
DISPERSION

7.1 Prugniel–Simien density profile

In this section we provide some additional helpful expressions related to the density profile
ρ(r) given in Prugniel & Simien (1997, their equation B6), and given here by equation (4).

Assuming spherical symmetry, the enclosed mass, M(r), is simply

M(r) = 4π

r
∫

0

ρ(r̄)r̄2 dr̄. (24)

Using the change of variable Z̄ = b(r̄/Re)
1/n, such that dr̄ = Renb−nZ̄n−1dZ̄, one obtains

M(r) = 4πρ0Re
3nbn(p−3)γ (n(3 − p), Z) , (25)

where Z = b(r/Re)
1/n and γ(a, x) is the incomplete gamma function given in equation (2).

The total mass is obtained by replacing γ (n(3 − p), Z) with Γ (n(3 − p)).
The circular velocity is given by

vcirc(r) =

√

GM(r)

r
. (26)

Assuming isotropy, the spatial velocity dispersion is given in Binney (1980) as

σs
2(r) =

G

ρ(r)

∫ ∞

r
ρ(r̄)

M(r̄)

r̄2
dr̄

=
4πGρ0

2Re
2n2b2n(p−1)

ρ(r)

∫ ∞

Z
Z̄−n(p+1)−1e−Z̄γ

(

n(3 − p), Z̄
)

dZ̄. (27)

This expression is easily computed numerically after making the substitution Z̄ = (Z/ cos θ),
such that dZ̄/dθ = Z sin θ/ cos2 θ, giving

σs
2(r) =

4πG(ρ0Renbn(p−1))2Z−n(p+1)

ρ(r)

∫ π/2

0
tan θ(cos θ)n(p+1)e−Z/ cos θγ

(

n(3 − p),
Z

cos θ

)

dθ.(28)

The projected, line–of–sight velocity dispersion as given by equation (B12) in Prugniel
& Simien (1997) is

σp
2(R) =

2G

I(R)Mtot

∞
∫

R

√
r̄2 − R2

r̄2
ρ(r̄)M(r̄) dr̄

=
8πGρ0

2Re
3n2bn(2p−3)

I(R)Mtot

∫ ∞

Z

√

Z̄2n − Z2n Z̄−n(p+1)−1e−Z̄γ
(

n(3 − p), Z̄
)

dZ̄

=
8πGρ0

2Re
3n2bn(2p−3)

I(R)Mtot
Z−np

∫ π/2

0

√

1 − (cos θ)2n tan θ(cos θ)npe−Z/ cos θγ
(

n(3 − p),
Z

cos θ

)

dθ,(29)

with Z now equal to b(R/Re)
1/n.

The mass profiles, circular velocity profiles, spatial and projected velocity dispersion
profiles are shown in Fig. 11 for a range of profile shapes. They agree closely with those
obtained from the exact deprojection of Sérsic’s R1/n model (Ciotti 1991; Simonneau &
Prada 2004). In order to show the behavior of vcirc near the break radius rb, and to allow
comparisons of (vcirc)

2 with σ2, we present both vcirc on a logarithmic scale and (vcirc)
2 on a

linear scale.
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Figure 11. Core–less galaxies. Panel a) mass (equation 25), b) circular velocity (equation 26), c) circular velocity squared, d)
spatial velocity dispersion squared (equation 27), and e) the square of the projected, line–of–sight velocity dispersion (equation 29),
for varying values of the profile shape n: n = 0.5 (solid lines), n = 1 (dotted), n = 2 (dashed), n = 4 (dash-dot), n = 10 (double–
dash). We have set Re=1, Mtot = 1, and G = 1. The square of each velocity term is thus effectively normalised to GMtot/Re.
Spherical symmetry and isotropy have been assumed.

7.2 Our density profile

Below are the equivalent expressions relevant to our adaptation of Prugniel & Simien’s
density profile for galaxies with power–law cores.

The enclosed mass M(r) is

M(r) = 4π

r
∫

0

ρ(r̄)r̄2 dr̄ = 4π

rmin
∫

0

ρ1(r̄)r̄
2 dr̄ + 4π

r
∫

rmin

ρ2(r̄)r̄
2 dr̄ ≡ M1(r) + M2(r) (30)

where ρ1(r̄) and ρ2(r̄) are given in equation (17), rmin is the minimum value of r or rb, and

M1(r) = 4πJ1(r), (31)

M2(r) = 4πL2(r), (32)

where J1(r) and L2(r) are defined in equations (9) and (12), respectively. The total mass
is obtained by setting the second incomplete gamma function in the expression for L2(r)
(equation 12) equal to zero. Assuming spherical symmetry, the circular velocity is given by
equation (26).

Again assuming isotropy, the spatial velocity dispersion is given by

σs
2(r) ≡ K1(r) + K2(r) + K3(r), (33)

where

K1(r) =
G

ρ1(r)

∫ rmax

r
ρ1(r̄)

M1(r̄)

r̄2
dr̄

=
4πGρb

2rb
2γ

ρ1(r)







1
3−γ

ln rmax

r
if γ = 1

1
2(3−γ)(1−γ)

(

rmax
2(1−γ) − r2(1−γ)

)

if γ 6= 1 and < 3
, (34)

K2(r) =
G

ρ2(r)
M1(rb)

∫ ∞

rmax

ρ2(r̄)

r̄2
dr̄

=
GM1(rb)ρbρ̄nbn(p+1)

Reρ2(r)

∫ ∞

Zmax

Z̄−n(p+1)−1e−Z̄dZ̄, (35)

K3(r) =
G

ρ2(r)

∫ ∞

rmax

ρ2(r̄)
M2(r̄)

r̄2
dr̄

=
4πGρb

2ρ̄2Re
2n2b2n(p−1)

ρ2(r)
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×
∫ ∞

Zmax

Z̄−n(p+1)−1e−Z̄
[

Γ (n(3 − p), Zb) − Γ
(

n(3 − p), Z̄
)]

dZ̄, (36)

with rmax = max(r, rb), Z = b(r/Re)
1/n, Zb = b(rb/Re)

1/n and Zmax = max(Z, Zb). In
passing, we note that the term −n(p + 1) appearing in the expression for K2(r) equals
0.6097 − 2n − 0.05563/n, and is thus negative for values of n greater than about 0.2. For
this reason we did not express K2(r) in terms of the incomplete gamma function. Following
what was done with equation (27), to help evaluate K2(r) and K3(r) numerically one may
apply the change of variable Z̄ = Zmax/ cos θ, to give

K2(r) =
GM1(rb)ρbρ̄nbn(p+1)

Reρ2(r)
(Zmax)

−n(p+1)
∫ π/2

0
tan θ(cos θ)n(p+1)e−Zmax/ cos θdθ, (37)

K3(r) =
4πGρb

2ρ̄2Re
2n2b2n(p−1)

ρ2(r)
(Zmax)

−n(p+1)

×
∫ π/2

0
tan θ(cos θ)n(p+1)e−Zmax/ cos θ [Γ (n(3 − p), Zb) − Γ (n(3 − p), Zmax/ cos θ)] dθ.(38)

Alternatively, one may use the change of variable r̄ = 1/s to transform the K2(r) term into
the expression

K2(r) =
G

ρ2(r)
M1(rb)

∫ 1/rmax

0
ρ2(1/s)ds. (39)

The projected, line–of–sight velocity dispersion is found to be

σp
2(R) ≡ S1(R) + S2(R) + S3(R), (40)

where

S1(R) =
2G

I(R)Mtot

Rmax
∫

R

√
r̄2 − R2

r̄2
ρ1(r̄)M1(r̄) dr̄

=
8πGρb

2rb
2γRe

3−2γnbn(2γ−3)

I(R)Mtot(3 − γ)

∫ Zmax

Z

√

Z̄2n − Z2nZ̄2n(1−γ)−1dZ̄ if γ < 3, (41)

S2(R) =
2G

I(R)Mtot
M1(rb)

∞
∫

Rmax

√
r̄2 − R2

r̄2
ρ2(r̄) dr̄

=
2G

I(R)Mtot
M1(rb)nbnpρbρ̄

∫ ∞

Zmax

√

Z̄2n − Z2nZ̄−n(p+1)−1e−Z̄dZ̄, (42)

S3(R) =
2G

I(R)Mtot

∞
∫

Rmax

√
r̄2 − R2

r̄2
ρ2(r̄)M2(r̄) dr̄

=
8πGρb

2ρ̄2Re
3n2bn(2p−3)

I(R)Mtot

×
∫ ∞

Zmax

√

Z̄2n − Z2nZ̄−n(p+1)−1e−Z̄
[

Γ (n(3 − p), Zb) − Γ
(

n(3 − p), Z̄
)]

dZ̄, (43)

with Rb = rb, Rmax =max(R, Rb), Z = b(R/Re)
1/n and Zb = b(Rb/Re)

1/n. Equation 42 and
43 can be integrated numerically using the change of variable Z̄ = Zmax/ cos θ.

The mass profiles, circular velocity profiles, spatial and projected velocity dispersion
profiles are shown in Fig. 12 for a range of profile shapes. The intriguing “dip” in some of the
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Figure 12. Core galaxies. Panels a–d) show the normalised mass (equation 30), e–h) circular velocity (equation 26), i–l) circular
velocity squared, m–p) spatial velocity dispersion squared (equation 33) and q–t) the square of the projected, line–of–sight velocity
dispersion (equation 40), for varying values of the outer profile shape n: n = 0.5 (solid lines), n = 1 (dotted), n = 2 (dashed),
n = 4 (dash-dot), n = 10 (double–dash); and varying central cusp slope γ. We have set Re = 1, rb = 0.01, Mtot = 1, and G = 1.
The square of each velocity term is thus effectively normalised to GMtot/Re. Spherical symmetry and isotropy have been assumed.
To show the behavior of vcirc near rb, and to enable easy comparison of (vcirc)

2 with σ2
s and σ2

p, we present vcirc on a logarithmic
scale and (vcirc)

2 on a linear scale.

velocity dispersion profiles, most notably the high n profiles with small γ, is perhaps worth
commenting on. It arises from the use of a sharp transition in the density profile (equation 6)
when the inner and outer slope (on either side of rb) are markedly different. Application of
a model with an extended transition region quenches this dip. The use of equation 5 with
decreasing values of α, i.e. an increasingly broader transition region, steadily reduces and
eliminates the dip. While profiles with α = 10 largely reproduce the velocity dispersions
shown, density profiles with α = 1 have smooth velocity dispersion profiles. In any case,
an inspection of the “pseudo” potential (equation 15) reveals that such a velocity structure
does not give rise to an unstable situation for particle orbits.

Equations pertaining to Prugniel & Simien’s (1997) density profile are obtained by setting
rb = 0 and ρbρ̄ = ρ0. Indeed, upon making these substitutions in the derivation of equations
for enclosed mass and velocity dispersion above, rmin = 0, rmax = r, Rmax = R, Zmax = Z
and the terms K1(r), K2(r), S1(r) and S2(r) vanish. Equations (25), (27) and (29) are then
easily recovered.
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8 APPENDIX B: DERIVATION OF THE POTENTIAL, FORCE AND
INTENSITY PROFILES

8.1 Potential

If the expression for the density (equation 6) is rewritten as ρ(r) = ρ1(r) + ρ2(r) (as was
done in subsection 2.3, equation 17), then the potential (equation 7) can be written as

Φ(r) = −4πG















1
r

r
∫

0
ρ1(r̄)r̄

2 dr̄ +
rb
∫

r
ρ1(r̄)r̄ dr̄ +

∞
∫

rb

ρ2(r̄)r̄ dr̄ if r ≤ rb,

1
r

rb
∫

0
ρ1(r̄)r̄

2 dr̄ + 1
r

r
∫

rb

ρ2(r̄)r̄
2 dr̄ +

∞
∫

r
ρ2(r̄)r̄ dr̄ if r > rb,

. (44)

Φ(r) = −4πG

{

1
r
J1(r) + J2(r) + L1(rb) if r ≤ rb,

1
r
J1(rb) + 1

r
L2(r) + L1(r) if r > rb,

, (45)

The derivation of integrals J1(r) and J2(r), which only involve a power-law integrand as-
sociated with ρ1(r), is trivial, while the integrals which involve ρ2(r) require a change of
variable Z̄ ≡ b(r̄/Re)

1/n, so that r̄ = Re(Z̄/b)n and dr̄ = RenZ̄n−1b−ndZ̄:

L1(r) ≡
∞
∫

r

ρ2(r̄)r̄ dr̄ = ρbρ̄

∞
∫

r

(

r̄

Re

)−p

e−b(r̄/Re)
1/n

r̄ dr̄

= ρbρ̄Re

∞
∫

r

(

r̄

Re

)1−p

e−b(r̄/Re)
1/n

dr̄

= ρbρ̄Re
2nbn(p−2)

∞
∫

b(r/Re)
1/n

Z̄n(2−p)−1e−Z̄ dZ̄

= ρbρ̄Re
2nbn(p−2)Γ

(

n(2 − p), b
(

r

Re

)1/n
)

(46)

L2(r) ≡
r
∫

rb

ρ2(r̄)r̄
2 dr̄ = ρbρ̄

r
∫

rb

(

r̄

Re

)−p

e−b(r̄/Re)
1/n

r̄2 dr̄

= ρbρ̄Re
2

r
∫

rb

(

r̄

Re

)2−p

e−b(r̄/Re)
1/n

dr̄

= ρbρ̄Re
3nbn(p−3)

b(r/Re)
1/n

∫

b(rb/Re)
1/n

Z̄n(3−p)−1e−Z̄ dZ̄

= ρbρ̄Re
3nbn(p−3)

[

Γ

(

n(3 − p), b
(

rb,

Re

)1/n
)

− Γ

(

n(3 − p), b
(

r

Re

)1/n
)]

. (47)

8.2 Force

Computing the radial force requires differentiation of the potential (8) with respect to the
radial coordinate r. When r ≤ rb, the differentiation is trivial after realising that the last
term is constant. For r > rb, we use the relation given in Abramowitz & Stegun (1974, their
equation 6.5.25):

∂Γ(a, x)

∂x
= −xa−1e−x, (48)
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and we note the following cancellation of terms simplifies matters

1

r

dL2(r)

dr
= −dL1(r)

dr
= ρbρ̄Re

(

r

Re

)1−p

e−b(r/Re)
1/n

. (49)

8.3 Projected Intensity

Substituting ρ1(r) from equation (17) into equation (16) yields

I1(R) =
2

Υ
ρbrb

γ

rb
∫

R

r1−γ

√
r2 − R2

dr. (50)

By using the change of variable y = r2, it is trivial to compute the expression for the special
case when γ = 0. The solution is given in the first line of equation (19).

When γ = 1, the change of variable r = R/ cos θ, such that dr/dθ = R sin θ/ cos2 θ, gives

I1(R) =
2

Υ
ρbrb

γ

rb
∫

R

1√
r2 − R2

dr =
2

Υ
ρbrb

γ

cos−1(R/rb)
∫

0

1

cos θ
dθ

=
2

Υ
ρbrb

γ ln

(

1

cos θ
+

sin θ

cos θ

)∣

∣

∣

∣

∣

cos−1(R/rb)

0

=
2

Υ
ρbrb

γ ln

(

1 +
√

1 − cos2 θ

cos θ

)∣

∣

∣

∣

∣

cos−1(R/rb)

0

=
2

Υ
ρbrb

γ ln





1 +
√

1 − R2/rb
2

R/rb



 =
2

Υ
ρbrb

γ ln





rb +
√

r2
b − R2

R



 . (51)

For other values of the cusp slope γ, further transformation of equation (50) is required.
Using the change of variable y ≡ 1 − R2/r2, equation (50) becomes

I1(R) =
2

Υ
ρbrb

γ







1

2
R1−γ

1−R2/rb
2

∫

0

y−1/2(1 − y)(γ−3)/2dy







=
ρbrb

γ

Υ
R1−γB1−R2/rb

2

(

1

2
,
γ − 1

2

)

. (52)

When γ = 2, the incomplete beta function (equation 20) can be simplified through the
change of variable u = t2, to give

I1(R) =
2

Υ
ρbrb

γ









R−1

√
1−R2/rb

2

∫

0

1√
1 − t2

dt









=
2ρbrb

γ

Υ
R−1 sin−1

(

√

1 − R2/r2
b

)

. (53)
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